Posts Tagged ‘everyday science’

Copenhagen MG seminar: Food and science fun (part 6)

Thursday, April 28th, 2011


How much does air weigh? With a balloon and a microwave oven you can easily find out says Peter Barham.

Peter Barham’s presentation at the MG seminar in Copenhagen focused on how food can be used to make students interested in physics and chemistry (not a bad thing, especially since 2011 is the International Year of Chemistry) -Most people think science is boring and difficult, he said. But demos can help bring science to life, and believe it or not – experiments are much better when they go wrong. Using balloons, champagne, potatoes and liquid nitrogen Peter Barham proved his point. (more…)

TGIF: Food related “Periodic videos”

Friday, August 20th, 2010

I believe most chemists are familiar with the “periodic videos” from the University of Nottingham, covering all the known chemical elements. The series features professor Martyn Poliakoff who’s grey hair is really worthy of a professor! They have now covered the complete periodic table of elements, and have even started to update some of their previously posted videos. There are also thematic videos as well as videos covering specific molecules appearing now. As a chemist I think the videos are great fun to watch since they show a number of exotic experiments I’ve never seen before combined with plenty of nice-to-know facts. I certainly recommend all these videos (for an overview, check out their website), but the reason I chose to blog about this is that I was delighted to find a number of more or less food related videos! These are definitely not going to make you a better cook. But some of them are quite amusing to watch, and you may even learn some chemistry as you go. But most of the food related videos are really just for fun :)

Cheeseburger in hydrochloric acid

(more…)

Towards the perfect soft boiled egg

Thursday, April 9th, 2009

egg-tray

Many cookbooks suggest the following for boiling eggs: 3-6 min for a soft yolk, 6-8 min for a medium soft yolk and 8-10 min for a hard yolk. If you are satisfied with this, there is no need for you to continue reading. But if you’ve ever wondered whether the size of an egg has any impact on the cooking time you should read on. And if you search the ultimate soft boiled egg we share a common goal! From a scientific view point, a cooking time of approximately 3-8 minutes to obtain a soft yolk is not very precise. A number of important parameters remain unanswered: What size are the eggs? Are they taken from the fridge or are they room tempered? Are they put into cold or boiling water? And if using cold water – when should the timer be started? When the heat is turned on or when the water boils? And would the size of the pan, the amount of water and the power of the stove top matter?

(more…)

Accelerated aging of wine

Monday, February 2nd, 2009

vinkorker
Can the natural process of aging wine in corked bottles be accelerated?

I recently found an interesting article on how an electric field can be used for maturation of wine (New Scientist news coverage of the article). Applying a AC field of 600 V/cm for 3 minutes resulted in an accelerated aging of wine and according to the authors of the paper, it made “harsh and pungent raw wine become harmonious and dainty”. They observed changes in concentrations of higher alcohols, aldehydes, esters and free amino acids. But I was quite surprised that they don’t say anthing about astringency and polyphenols (tannins). I’d expect some changes there as well, but alas it’s so much more difficult to measure the polyphenols than the low molecular compounds. A sensory panel identified both positive and negative effects of the electric treatment which helped identify an optimum treatment. Apparently several Chinese wine manufacturers are testing the technology on a pilot scale now. Many people have a romantic impression of how wine is made, but the extensive catalogues of “corrective chemicals” available to the modern wine maker should perhaps make you reconsider the romatic idea of wine making. Even professor Hervé Alexandre at the University of Burgundy has given the technology a thumbs up: “Using an electric field to accelerate ageing is a feasible way to shorten maturation times and improve the quality of young wine”. Who knows – maybe you’ll soon be drinking a wine that has been zapped?
(more…)

Speeding up the Maillard reaction

Friday, September 26th, 2008


Ever thought about how pretzels and salt sticks get their nice brown color?

The products of the Maillard reaction provide tastes, smells and colors that are much desired and lend their charachteristics to a variety of foods. In this post I will focus on the factors that influence how fast the Maillard reaction proceeds. And more specifically I’ll give examples on how the Maillard reaction can be speeded up. This is not about fast food, nor is it about saving time. It’s more about controlling the browning reaction by speeding it up or slowing it down in order to get a desired end result.

The Maillard reaction is, to put it simple, a reaction between an amino acid and a sugar (there’s more on the chemistry at the end of the post). To speed it up you can do one or more of the following:
(more…)

Soda fountain science explained

Thursday, June 19th, 2008


Picture by Michael Murphy (CC-BY-SA)

The soda fountain (Diet Coke + Mentos) has been around the net for quite a while with some spectacular videos available, and it has even made it into a news paper cartoon. People go crazy about this and the largest number of simultaneous fountains is steadily increasing.

Despite the interest, only now did a scientific paper appear on the subject. Many have speculated about what causes the reaction between Mentos and Diet Coke, and some have focused on possible acid-base reactions taking place. Mythbusters investigated this in 2006 (watch episode) and came up with the following factors that contribute to the bubble formation:

Diet coke

  • carbon dioxide is what makes the bubbles form in the first place
  • in synthetic mixtures aspartam, caffeine and potassium benzoate where shown give better fountains

Mentos

  • the most important property is the rough surface which provides plenty of nucleation sites for bubble formation
  • the density makes them sink which is ideal as the bubbles formed at the bottom of the bottle help expel much more soda
  • mentos contains gelatin and gum arabic which could also reduce surface tension

In the paper “Diet Coke and Mentos: What is really behind this physical reaction?” by Tonya Shea Coffey the findings of the Mythbuster teams are largely confirmed.

By measuring contact angles it was shown that aspartame and potassium benzoate reduce the surface tension of water. Aspartame is a winner, and as an extra benefit clean up is much easier with Diet Coke than sugared Coke. The amount of caffeine however is too low to have any effect. The roughness of the Mentos surface was studied with special microscopes (see picture below). Fruit Mentos have smooth patches, but the coating is not uniform and contrary to the Mythbuster experiment normal Mentos and Fruit Mentos performed equally well with regards to foam formation. The roughness of the Mentos surface was inbetween that of rock salt and the Life savers which suggests that roughness is not a single factor determining the reaction. The Mentos surface is covered with gum arabic which reduces surface tension, and experiments showed that even without Mentos, gum arabic could cause a reaction to occur. It is the combined effects of reduced surface tension (due to ingredients in Diet Coke and Mentos) and the rough surface of Mentos which is the key to understand the reaction.

As expected, the article also confirms that the reaction is more vigours at higher temperatures (i.e. solubility of carbon dioxide deacreases with increasing temperature). It was also shown that Mentos sink faster to the bottom of a 2 L bottle compared with rock salt, Wint-O-Green Life savers and sand (this is a function of size and density, not only density). When bubbles are formed at the bottom of the bottle the bubble has more time to grow as it rises. This causes a more explosive reaction and more soda is expelled from the bottle.


The picture shows scanning electron microscopy images of Mint Mentos (a) and (c) and Fruit Mentos with a candy coating (b) and (d). The scale bars in each image represent the lengths (a) 200 μm, (b) 100 μm, (c) 20 μm, and (d) 20 μm. Fruit Mentos has smooth patches, but the coating is not uniform. (Reprinted with permission from Coffey, T. S, American Journal of Physics, Vol. 76, Issue 6, pp. 551-557, 2008. Copyright 2008, American Association of Physics Teachers)

The question which lingers on my mind is whether Diet Coke and Mentos represent the optimal combination of ingredients to create a soda fountain. With regard to convenience, I guess the answer is yes. But perhaps it’s possible to create an even more powerful reaction? Since lowering the surface tension of water is important, I’m wondering if it would be possible to find a surfactant that could be added without setting the reaction off? Mentos would of course still be needed for the rough surface to provide nucleation sites. In the above mentioned study addition of diluted dish washing liquid was enough to give a pretty good reaction, so this is not an option. But perhaps a couple of drops right on the Mentos surface would work? I definitely need to try this some time.

Wonders of extraction: Ethanol

Sunday, June 8th, 2008


Extraction of cherries with ~45% ethanol in water

Ethanol is a molecule with both a polar and a non-polar end, so it’s properties are somewhat in between those of water and oil (which will be the topic of the next post in this series about extraction). This is easily illustrated by the fact that both water and oil are soluble in pure ethanol (albeit not at the same time – adding water to ethanol reduces the solubility of oil). Many taste molecules are polar whereas most aroma molecules are non-polar, and the good thing is that ethanol can be used to extract both groups of compounds.

I belive the most widespread use of ethanol for extractions in the kitchen is for sweet liqueurs where fruits or berries are extracted with ethanol and the extract is sweetened with sugar. The word liqueur comes from the Latin word liquifacere which means “to dissolve”, and this is essentially what happens – the ethanol and water extract and dissolve flavor and color from the fruit.

Some also make their own spirits by infusing spices and herbs. One example is aquavit which is based on carraway combined with a number of other spices for complexity such as dill, coriander, anis, fennel, liquorice, cardamom and lemon. Commercial aquavits are distilled, but at home it’s suffices to filter of the spices and herbs. As a result home made aquavits are always amber colored (such as the one pictured in a previous post).

For extractions like these, one always uses diluted ethanol, typically 30-60% ethanol in water would be used, and most often somewhere around 40-50%. One reason for this is that higher concentrations of ethanol would extract to many bitter and astringent compounds. Another reason is that in some (most?) countries it is illegal to posess, buy and/or sell ethanol at higher concentrations for consumption (pure ethanol for technical use is denatured if sold in normal stores and requires special permissions if used in laboratories).

Apart from the steping herbs and spices in ethanol to make liqueurs, the only other example of relevance for the kitchen I can think of is for extraction of vanilla beans to make pure vanilla extract. This is quite surprising actually, and although I really don’t know if ethanol is used for extraction in professional kitchens, it is my impression that ethanol extractions are underutilized in the kitchen.

There are several benefits with ethanolic spice and herb extracts:

  • fast – no need to wait for the spices to be extracted since they have been “pre extracted”, you can taste the dish immediately and add more spice extract if necessary
  • no residues – seeds, leaves or bark are filtered off before use
  • convenient – spice extracts are an excellent way of adding clean, concentrated aromas
  • stable – spice extracts keep very well (although the storage may also change the flavor profile somewhat and “mature” the flavor)
  • new flavors – some spices and in particular herbs will change upon extraction and storage and this can open up new possibilities (this needs quite some experimentation though – some herb flavors change to the worse…)

What are your experiences with ethanol extractions in the kitchen?

Wonders of extraction: Water

Tuesday, June 3rd, 2008


Extraction of peppermint leaves with hot water

Water is a polar molecule, meaning that one end has a small negative charge and the other a small positive charge. Because of this water is a very good solvent for other polar molecules and ions. For instance water is the solvent of choice for substances that provide taste, be it salt, sour, sweet or bitter as these are normally quite polar molecules.

A general rule is that the solubility of molecules and ions increases with the temperature of the water. Extractions are therefore faster if the water is boiling. This is the reason why we use hot water to extract tea leaves or ground coffee beans, even if we want to prepare ice tea or ice coffee. But by lowering the temperature and extending the extraction time we can change the relative proportion of what we extract. It therefore makes perfectly sense that different temperatures are recommended for different types of tea. Using different temperatures for the same kind of tea will of course also influence the flavor profile.

Polar molecules are more easily extracted than non-polar molecules. This is evident if we leave a tea bag for a long time in hot water. The bitter taste is due to the slow extraction of large polyphenol molecules which are less soluble in water. If tea is brewed at a lower temperature, less of the bitter tasting substances will be extracted.

Although water is polar, less polar and even non-polar substances can be extracted with water, especially if the water is boiling hot. You do this every day when prepare coffee. If you take a close look at cup of freshly brewed coffee you can notice small pools of oily substances floating on top of the coffee. The more severe conditions used when extracting coffee to make an espresso ensure that even more oily substances are extracted. Other examples of extraction using water in the kitchen include preparation of stock, soups and gravies.

The principle of extraction is simple, but a number of questions remain largely unexplored with regard to flavor: How do ions affect extraction? What role does pH play? How does temperature influence flavor? There is surprisingly little research on this that includes a sensory evalution.

Osmosis in the kitchen

Wednesday, April 9th, 2008

Lettuce should be fresh and crisp but upon storage water will eventually evaporate. The pressure inside the cells drops and the leaves shrink and become less appetizing. The simple yet effective remedy is to immerse the lettuce leaves in plain, cold tap water. The water will then diffuse back into the cells again. The process is known as osmosis [wikipedia].

For the following experiment I purposly left some lettuce (Lactuca sativa var. crispa, sold in Norway under the name “Rapid”, it’s a Summer Crisp/Batavian cultivar) to really dry out as you can see from the picture.

After approximately 4 hours in water the leaf looks like this. Notice that along the rim the leaf was so dry that the cells were damaged “beyond repair”.

To illustrate this relatively slow process I set my camera to take a picture every minute and left it for almost 4 hours. I then stiched it together and the resulting time lapse movie shows the process speeded up 720x (click if the embedded video won’t work).

The wonderful thing about this simple experiment is that it actually illustrates the essence of a recently rewarded Nobel prize (and I should thank Erik Fooladi for pointing this out to me)! The 2003 chemistry prize was awarded “for discoveries concerning channels in cell membranes”. The swedish Nobel foundation have excellent pages with further explanations for the public and for specialists alongside an illustrated presentation (recommended!). There are even two animations of which the first is also available on youtube (embedded below, poor resolution, download the original for higher resolution!). It shows how water molecules move through cell membranes:

Ten tips for practical molecular gastronomy, part 8

Sunday, February 3rd, 2008

balancing-forks-tall.jpg
Read about the physics behind the balancing fork trick.

8. Experiment!

Dare to experiment and try new ingredients and procedures. Do control experiments so you can compare results. When evaluating the outcome, be aware that your own opinions will be biased. Have a friend help you perform a blind comparison, or even better a triangle test to evaluate the outcome of your experiments.

In a scientific context, an experiment is a set of actions and observations performed in the context of solving a particular problem, in order to support or falsify a research hypothesis. In a kitchen context, the problem to solve would typically be related to taste, aroma, texture or color. And the required actions and observations would be cooking and eating.

An essential part of the scientific method is that new knowledge is gained when, based previous knowledge, an assumption is made and tested. In the kitchen, this is exactly what you do when you taste your concoctions repeatedly as you cook. And it is also what makes you an experienced cook, because you remember and learn from your previous successes and mistakes. It might sound very complicated, but here’s how it goes:

1) Observation: soup lacks flavor
2) Hypothesis: adding something with flavor might help
3) Experiment: add more spices
4) New observation: soup tastes more (or less)
5) Hypothesis is either supported (or rejected)

Of these steps, I think observation is the easiest. Coming up with a hypothesis however can sometimes be difficult. If you have lumps in your custard or a sauce that’s separating, it isn’t always easy to think of what to do. This is where books on popular food science and molecular gastronomy might help you.

balancing-forks-1.jpg

Think outside the cook book! I mentioned in previous post that you should always question authorities and cook books. And even when you have a recipe that works, remember that it’s nothing more than a suggestion. For instance, it can be useful to know when to be sloppy and when to be accurate with measurements. The smaller amount you measure, the greater the precision should be. Let’s consider a hypothetical recipe that calls for 1000 g flour and 1 g of saffron. Whether you use 999 or 1001 g of flour makes no difference, but using 1 or 2 g of saffron will be quite noticable. A good rule of thumb is that you should measure to within +/- 10% of the given amount. But again, don’t follow this blindly. Experience will show when you can be even more sloppy.

Thinking of good experiments to do requires both creativity and experience, and there are many sources of inspiration. The molecular gastronomy movement has come up with a number of books and blogs which point towards new ingredients and procedures. There are several approaches to flavor pairing (i.e. a general one based on experience and a chemical one based on impact odorants). Further more there’s a lot of inspiration to get from regional cooking – also for molecular gastronomists! Lastly, I think considering not only the food but the whole atmosphere and the setting of the meal is important, because our senses are connected!

balancing-forks-2.jpg

The best way to judge the outcome of a new procedure or ingredient is to compare it with the original. I’ve previously termed this “parallel cooking”. In scientific contexts it’s very common to do control experiments and I can’t see why this shouldn’t be done in the kitchen routinely. Im convinced that this could have saved us from many kitchen myths!

Once you’ve done your parallel cooking, you have to taste it. If you did the cooking, you’ll probably have an opnion or expectation that the new dish is better or worse than the original. The big problem here is that due to confirmation bias, if you know what you are eating, this will influence your perception of it. Therefore it’s crucial to do a blind tasting (or a double-blind tasting). Have friend help you label each dish with random three digit numbers (to avoid thinking about ranking) and give them to you. If the dishes can easily be recognized due to color, it’s important that the lights are turned down or that you are blindfolded. State which dish you prefer and have your friend reveal the identity of the dishes tasted.

A slightly more sophisticated test is the triangle test which is commonly used in the food industry. The tester is presented with three samples of which two are identical and the task is to pick the odd one out. Using statistics, it’s possible to evaluate the outcome of repeated tests. The number of correct assignments in a number of triangle tests required for you to be 95% sure there is a difference are given in the table below. Read more about simple difference tests here.

Number of tests performed Number of correct assignments required
3 3
4 4
5 4
6 5
7 5
8 6
9 6
10 7

Bionomial distribution for a triangle test (p=1/3) at 0.05 probability level. A more extensive table can be found here.

It seems that this would be the ultimate way to determine whether or not there is a difference between pepsi and coke. It’s more than 50 years since the first experiments were conducted. The theory is simple, but in the real world things aren’t always that simple. Read the entertaining story about Fizzy logic.

balancing-forks-3.jpg

There are several examples of experimental cooking out on the net, and I thought I’d share some of them with you as this might illustrate my ideas on the subject.

Many cooks have strong opinions about how garlic should be treated. Should it be minced, crushed or microplaned? And does this really influence the taste and aroma? Or does it only affect the degree of extraction and hence the intensity of the flavor? Dominic of Skillet Doux had a excellent post on this subject in 2006, Deconstructing garlic. The task was formulated as follows:

The subject of this experiment is the effect that various methods of breaking down garlic have on its flavor when used to prepare a dish. The hypothesis is that not only does mincing garlic create a different flavor than crushing it, but also that mincing is the preferred method for pasta sauces. Furthermore, the experiment is intended to determine if microplaning garlic achieves a character different from mincing or crushing.

In his conclusion, Dominic writes ” I was surprised to discover that the difference between the minced and crushed garlic sauces was even more significant than I had previously thought”. Check out his post to find out which kind of garlic treatment he prefers for his pasta sauces. As a side comment it can be mentioned that a group of researchers in 2007 studied the effect of cooking on garlics ability to inhibit aggregation of blood platelets. They found that crushing could reduce the loss of activity upon heating. But unfortunately they didn’t report anything about the flavor.

Other food bloggers have also adopted experimental cooking with emphasis on systematic and thorough testing. Examples include Chad’s experiments with gellan, konjac and iota/kappa carrageenans, Michael Chu’s parallell cooking of bacon and his eggplant test and Papin’s comparison of orange juices – to mention but a few! And I shouldn’t forget Dylan Stiles either whom I mentioned in part 5 of this series:

A challenge with aroma molecules is that they should remain intact during storage and not be released until cooking (or even better, until consumption). A example would be to install a Liebieg condenser over your pot. Dylan Stiles has explored this in his column Bench Monkey by placing a bag of ice on top of the lid. He claims that his roommates preferred the curry which has been cooked under “reflux conditions”. The study was performed in a double blind manner (which I will come back to in part 8 of this series).

An extreme example of the application of the scientific method to cooking appeared in the news last spring when the recipe for the ultimate bacon buttie was revealed by scientists from Leeds University. Commissioned by Danish Bacon, the study evaluated more than 700 variations of a bacon buttie. They even came up with a “formula” for the perfect bacon buttie and quantified the required crispiness and crunchiness. The news story was picked up by many news agencies, so although it wasn’t necessarily ground breaking science, at least it was clever marketing.

*

Check out my previous blogpost for an overview of the 10 tips for practical molecular gastronomy series. The collection of books (favorite, molecular gastronomy, aroma/taste, reference/technique, food chemistry, presentation/photography) and links (webresources, people/chefs/blogs, institutions, articles, audio/video) at khymos.org might also be of interest.