Posts Tagged ‘flavor pairing’

TGRWT #22: Raisin

Saturday, July 28th, 2012


Impatient raisin waiting to be cooked

More than 1 1/2 year has passed since the last round of They Go Really Well Together, and in the meantime there’s been quite some publicity with TGRWT being mentioned both in Gastronomica and Chemical and Engineering News. Based on predicted aroma similiarity participants are given two or more ingredients to cook with and blog about. The idea is based on a science guided approach to bring together ingredients one might otherwise not have used together when cooking. Altogether somewhere between 100 and 200 recipes have been submitted in previous rounds, so it’s worthwhile browsing through the rounds-ups that have been published. Some readers have inquired about a continuation of the blogging event, and I’m happy to announce a new round of TGRWT starting today here at Khymos. In previous rounds two ingredients were chosen, but this time there is a slight twist as there is only one ingredient: raisins. Participants will then be able to select one (or more) ingredients to pair with raisins using food pairing trees at the Foodpairing website. Raisins alone rarely play a significant role in cooking, but their rich flavor arising from enzymatic browning reactions (as opposed to the non-enzymatic Maillard browning), and as such they are one of the rare examples of desirable enzymatic browning. I believe raisins should open up a host of possibilities ranging from savory dishes to the obvious sweet ones and look very much forward to see your contributions!
(more…)

A flavor pairing color analogy

Thursday, December 8th, 2011

Flavor pairing is a controversial* topic which I’ve blogged about many times in the past. In my last post I suggested that predicted aroma similarity may be a more precise term, and below is an attempt to illustrate predicted aroma similarity (of type 2d according to this classification) by using a color analogy. Let me explain a little first: The letters describe different foods and colors are used to illustrate the sum of the key odorants. The normal situation is that foods A and K (which are perceived as different because they are far apart in the alphabet) also have different colors meaning that they share few or no key odorants. A and B however are close in the alphabet and have similar colors, hence they share key odorants. In some cases foods that we think are very different (A and Z) may turn out to share several key odorants (i.e. have similar colors). The “flavor pairing hypothesis” is a way of finding the “Z” based on predict aroma similarity. I think one reason why we cannot always find the “Z” is that (more…)

Flavor pairing revisited

Tuesday, March 8th, 2011


Foamy strawberries with coriander (cilantro) from TGRWT #3 turned out to be a delicious combination. Could it possibly be a category 2d predicted aroma similarity?

As mentioned in my previous post about the flavor pairing presentation given by Wender Bredie as part of the Copenhagen seminar on molecular gastronomy I’m really happy that the topic has been brought into the scientific community. At the same time is has also become very clear to me that the term flavor pairing needs some clarification. First of all I have come to realize that the the term flavor pairing is slightly misleadning, and I wonder if aroma similarity perhaps is a more precise term. As I see it, today the term flavor pairing is used in a range of different ways: (more…)

Copenhagen MG seminar: Flavor pairing (part 2)

Friday, March 4th, 2011


Wender Bredie presented results from experiments designed to test the flavor pairing hypothesis

A topic that I was particularily excited to hear about at the molecular gastronomy seminar in Copenhagen was flavor pairing. Since Heston Blumenthal presented his white chocolate and caviar combination based on amines in 2002 and Francois Benzi of Firmenich the pork liver-jasmine combination based on indole the idea has been further elaborated by Bernard Lahousse and Lieven De Couvreur who launched the foodpairing website and by me in the TGRWT food blogging event. Despite the interest and fascination it is fair to say the flavor pairing is still controversial – see for instance the discussion with in particular Jorge Ruiz. What is clearly lacking in the field is a more stringent scientific approach (as well as someone with time, interest, a sensory panel and the money to finance the activities…). It was therefore great to hear that sensory science professor Wender Bredie together with PhD student Ditte Hartvig actually set out to test the flavor pairing hypothesis formulated as: if major volatiles are shared between two foods it may very well be that they go well together. To achieve this they used a sensory panel to assess the odor of food pairs mixed and unmixed. Bredie proposed that a hyper addition of odor intensities would perhaps be the holy grail of flavor pairing – that is if the intensity of the mixed odors would be more than the sum of the unmixed intensities. Or even better: if there would be a hyper additive effect on pleasantness(more…)

The Flemish Primitives 2010 (part 1)

Tuesday, February 9th, 2010

Again I was lucky that all the practical details worked out so I could attend this year’s Flemish Primitives in Brugge. For some one who’s not attended, it’s not so easy to grasp the concept and ideas behind The Flemish Primitives (TFP). And I admit, even though I’ve been there twice it’s not so easy to convey it in a short way. First of all the name is rather cryptic (unless you’re into art) as it refers to early Netherlandish painting. The link to food is described as follows by the organizers of the event (my highlights):

In the 15th and 16th century, ’The Flemish Primitives’ were masters in combining their talent with new techniques. Techniques they developed by interacting with other disciplines like manuscripting, sculpting, etc. This way of working changed the painting techniques in all of Western Europe forever. The event ‘The Flemish Primitives’ wants to continue in the same spirit. Respect for food products and beverages, the knowledge of the classic cooking techniques combined with a stimulation of new techniques and creativity. By promoting interaction between scientists, the world’s most famous chefs and artists, the event wants to deliver a creative boost for the food industry and gastronomy in Belgium and the world.

Considering last year’s sucess it was no big surprise that this year’s event was sold out (and the foyer of the Concertgebouw was equally full in the coffee breaks). And with the memories from last year I arrived in Brugge with great expectations. One main difference from previous years was that the scientific parts were much better integrated throughout the day. Scientists were on stage alongside the chefs, explaining their work. Also, contrary to last year’s back stage kitchen, they had now moved the kitchen onto the stage, flanked by a bar, some sofas and laboratory mezzanine. A good decision!
(more…)

TGRWT #19: Tomato and black tea

Monday, September 7th, 2009

tgrwt-19

This month’s round of TGRWT is hosted by Pablo over at Medellitin, and the foods to pair this time are tomato and black tea. As always you can find instructions on how to participate in the announcement post. If you are new to TGRWT (which stands for They Go Really Well Together), check out the round-ups of the previous 18 rounds! And if you are chemically inclined, you may want to read on to learn more about the compounds behind this months pairing.
(more…)

French book on flavor pairing of food and wine

Wednesday, July 22nd, 2009

papilles_molecules

The Canadian sommerlier François Chartier (he has an extensive website featuring several blogs, including a section named Sommellerie moléculaire) is out with a new book on food and wine pairing. It’s not just another (superfluous) book on the subject. As the title Papilles et molécules (= Tastebuds and Molecules, unfortunately not available in English) suggests there is some science involved. It turns out in fact that he has applied the principles of flavor pairing to food and wine. With help from Richard Béliveau from Agriculture and Agri-Food Canada and Martin Loignon from PerkinElmer he has analyzed wines and food and comes up with the following suggestions for lamb, as described in the article “Chemistry-set wine pairing”:
(more…)

Ten tips for practical molecular gastronomy, part 8

Sunday, February 3rd, 2008

balancing-forks-tall.jpg
Read about the physics behind the balancing fork trick.

8. Experiment!

Dare to experiment and try new ingredients and procedures. Do control experiments so you can compare results. When evaluating the outcome, be aware that your own opinions will be biased. Have a friend help you perform a blind comparison, or even better a triangle test to evaluate the outcome of your experiments.

In a scientific context, an experiment is a set of actions and observations performed in the context of solving a particular problem, in order to support or falsify a research hypothesis. In a kitchen context, the problem to solve would typically be related to taste, aroma, texture or color. And the required actions and observations would be cooking and eating.

An essential part of the scientific method is that new knowledge is gained when, based previous knowledge, an assumption is made and tested. In the kitchen, this is exactly what you do when you taste your concoctions repeatedly as you cook. And it is also what makes you an experienced cook, because you remember and learn from your previous successes and mistakes. It might sound very complicated, but here’s how it goes:

1) Observation: soup lacks flavor
2) Hypothesis: adding something with flavor might help
3) Experiment: add more spices
4) New observation: soup tastes more (or less)
5) Hypothesis is either supported (or rejected)

Of these steps, I think observation is the easiest. Coming up with a hypothesis however can sometimes be difficult. If you have lumps in your custard or a sauce that’s separating, it isn’t always easy to think of what to do. This is where books on popular food science and molecular gastronomy might help you.

balancing-forks-1.jpg

Think outside the cook book! I mentioned in previous post that you should always question authorities and cook books. And even when you have a recipe that works, remember that it’s nothing more than a suggestion. For instance, it can be useful to know when to be sloppy and when to be accurate with measurements. The smaller amount you measure, the greater the precision should be. Let’s consider a hypothetical recipe that calls for 1000 g flour and 1 g of saffron. Whether you use 999 or 1001 g of flour makes no difference, but using 1 or 2 g of saffron will be quite noticable. A good rule of thumb is that you should measure to within +/- 10% of the given amount. But again, don’t follow this blindly. Experience will show when you can be even more sloppy.

Thinking of good experiments to do requires both creativity and experience, and there are many sources of inspiration. The molecular gastronomy movement has come up with a number of books and blogs which point towards new ingredients and procedures. There are several approaches to flavor pairing (i.e. a general one based on experience and a chemical one based on impact odorants). Further more there’s a lot of inspiration to get from regional cooking – also for molecular gastronomists! Lastly, I think considering not only the food but the whole atmosphere and the setting of the meal is important, because our senses are connected!

balancing-forks-2.jpg

The best way to judge the outcome of a new procedure or ingredient is to compare it with the original. I’ve previously termed this “parallel cooking”. In scientific contexts it’s very common to do control experiments and I can’t see why this shouldn’t be done in the kitchen routinely. Im convinced that this could have saved us from many kitchen myths!

Once you’ve done your parallel cooking, you have to taste it. If you did the cooking, you’ll probably have an opnion or expectation that the new dish is better or worse than the original. The big problem here is that due to confirmation bias, if you know what you are eating, this will influence your perception of it. Therefore it’s crucial to do a blind tasting (or a double-blind tasting). Have friend help you label each dish with random three digit numbers (to avoid thinking about ranking) and give them to you. If the dishes can easily be recognized due to color, it’s important that the lights are turned down or that you are blindfolded. State which dish you prefer and have your friend reveal the identity of the dishes tasted.

A slightly more sophisticated test is the triangle test which is commonly used in the food industry. The tester is presented with three samples of which two are identical and the task is to pick the odd one out. Using statistics, it’s possible to evaluate the outcome of repeated tests. The number of correct assignments in a number of triangle tests required for you to be 95% sure there is a difference are given in the table below. Read more about simple difference tests here.

Number of tests performed Number of correct assignments required
3 3
4 4
5 4
6 5
7 5
8 6
9 6
10 7

Bionomial distribution for a triangle test (p=1/3) at 0.05 probability level. A more extensive table can be found here.

It seems that this would be the ultimate way to determine whether or not there is a difference between pepsi and coke. It’s more than 50 years since the first experiments were conducted. The theory is simple, but in the real world things aren’t always that simple. Read the entertaining story about Fizzy logic.

balancing-forks-3.jpg

There are several examples of experimental cooking out on the net, and I thought I’d share some of them with you as this might illustrate my ideas on the subject.

Many cooks have strong opinions about how garlic should be treated. Should it be minced, crushed or microplaned? And does this really influence the taste and aroma? Or does it only affect the degree of extraction and hence the intensity of the flavor? Dominic of Skillet Doux had a excellent post on this subject in 2006, Deconstructing garlic. The task was formulated as follows:

The subject of this experiment is the effect that various methods of breaking down garlic have on its flavor when used to prepare a dish. The hypothesis is that not only does mincing garlic create a different flavor than crushing it, but also that mincing is the preferred method for pasta sauces. Furthermore, the experiment is intended to determine if microplaning garlic achieves a character different from mincing or crushing.

In his conclusion, Dominic writes ” I was surprised to discover that the difference between the minced and crushed garlic sauces was even more significant than I had previously thought”. Check out his post to find out which kind of garlic treatment he prefers for his pasta sauces. As a side comment it can be mentioned that a group of researchers in 2007 studied the effect of cooking on garlics ability to inhibit aggregation of blood platelets. They found that crushing could reduce the loss of activity upon heating. But unfortunately they didn’t report anything about the flavor.

Other food bloggers have also adopted experimental cooking with emphasis on systematic and thorough testing. Examples include Chad’s experiments with gellan, konjac and iota/kappa carrageenans, Michael Chu’s parallell cooking of bacon and his eggplant test and Papin’s comparison of orange juices – to mention but a few! And I shouldn’t forget Dylan Stiles either whom I mentioned in part 5 of this series:

A challenge with aroma molecules is that they should remain intact during storage and not be released until cooking (or even better, until consumption). A example would be to install a Liebieg condenser over your pot. Dylan Stiles has explored this in his column Bench Monkey by placing a bag of ice on top of the lid. He claims that his roommates preferred the curry which has been cooked under “reflux conditions”. The study was performed in a double blind manner (which I will come back to in part 8 of this series).

An extreme example of the application of the scientific method to cooking appeared in the news last spring when the recipe for the ultimate bacon buttie was revealed by scientists from Leeds University. Commissioned by Danish Bacon, the study evaluated more than 700 variations of a bacon buttie. They even came up with a “formula” for the perfect bacon buttie and quantified the required crispiness and crunchiness. The news story was picked up by many news agencies, so although it wasn’t necessarily ground breaking science, at least it was clever marketing.

*

Check out my previous blogpost for an overview of the 10 tips for practical molecular gastronomy series. The collection of books (favorite, molecular gastronomy, aroma/taste, reference/technique, food chemistry, presentation/photography) and links (webresources, people/chefs/blogs, institutions, articles, audio/video) at khymos.org might also be of interest.

Practical molecular gastronomy, part 5

Tuesday, May 1st, 2007

5. Learn how to control taste and flavor.

apple-pear.jpg

When invited over to friends for dinner, even before eating, you judge the food by it’s aroma, handing out compliments such as “It really smells nice”! Thankfully, nature is on the cook’s side, because when we prepare food and heat it, volatile aroma compounds are released which trigger very sensitive receptors in our noses. It is generally said that 80% of “taste” is perceived by our nose (what we refer to as aroma), whereas only 20% is perceived by our tongue. How important smell is becomes clear if you catch a cold – suddenly all food tastes the same. Too illustrate the importance of smell, prepare equally sized pieces of apple and pear. Close your eyes, hold your nose and let a friend give you the pieces without telling which is which. Notice how difficult it is to tell them apart. In fact, with a good nose clip you wouldn’t even be able to tell the difference between an apple and an onion! Then, with a piece of either in your mouth, let go of your nose. Within a second you can tell whether it’s apple or pear!

Taste
Our tongue has approximately 10.000 taste buds and they are replaced every 1 to 3 weeks. Their sensitivity increases roughly in the following order: sweet < salt < sour < bitter. In addition to the four basic tastes there is umami, the savory, fifth taste. This taste is produced by monosodium glutamate (MSG), disodium 5’-inosine monophosphate (IMP) and disodium 5’-guanosine monophosphate (GMP). Pure MSG doesn’t taste of much, but can enhance the taste of other foods. There are also some claims of a sixth taste.

A number of taste synergies/enhancements exist. I’ve also included three examples of how flavours can influence taste:

  • MSG, IMP and GMP enhance each other
  • IMP and GMP enhance sweetness
  • MSG, IMP and GMP generally enhance saltiness and vice versa
  • Salt enhances MSG, so foods with a natural high level of MSG (tomatoes) taste more if a pinch of salt is added
  • Salt and acid at low/medium concentrations enhance each other
  • Salt at low concentrations enhances sweet taste
  • Black pepper reduces sweet taste
  • Vanilla enhances sweet taste
  • Cinnamon enhances sweet taste
  • The only general, over-all trend which can be found is that binary tastes enhance each other at low concentrations and suppress each other at higher concentrations (but there are several exceptions!). Do check out “An overview of binary taste–taste interactions” (DOI:10.1016/S0950-3293(02)00110-6) if you’re interested in more details on binary taste interactions. I’ve tried to visualize taste enhancements (green) and suppresions (red) in the following figure using arrows to indicate the direction. For example, salt suppresses sweetnes at high concentrations.

    binary-taste-interactions.jpg

    In addition to taste, our tongue also percieves texture, temperature and astringency. An interesting thing about the temperature receptors is that they can be triggered not only by temperature, but also by certain foods. The cold receptor is triggered by mint, spearmint, menthol and camphor. There is even a patented compound, monomenthyl succinate, that triggers the cold receptor, but without the taste of menthol. It’s marketed under the name Physcool by the flavour company Mane.

    Substances such as ethanol and capsaicin trigger the trigeminal nerve, causing a burning sensation. Capsaicin also triggers the high temperature receptors of the tongue, hence the term “hot food” which can refer both to spicy food and food which is very warm. For a general article about taste, check out “Taste Perception: Cracking the Code” (DOI:10.1371/journal.pbio.0020064, free download).

    Flavour
    Our nose has about 5-10 million receptors capable of detecting volatile compounds. There are about 1000 different smell receptors and they allow us to distinguish more than 10.000 different smells – perhaps as many as 100.000! In order for us to smell something, the molecule needs to enter our nose at a concentration sufficient for us to detect. Aroma compounds are typically small, non-polar molecules. The fact that they are small means they will have low boiling points – they are volatile and spread rapidly throughout a room. They are often referred to as essential oils and are very soluble in fat, oil and alcohol. These aroma compounds generally not soluble in water, but there are also water soluble aroma compounds; just think of a well prepared stock – no fat but lots of taste and aroma!

    A challenge with aroma molecules is that they should remain intact during storage and not be released until cooking (or even better, until consumption). A example would be to install a Liebieg condenser over your pot. Dylan Stiles has explored this in his column Bench Monkey by placing a bag of ice on top of the lid. He claims that his roommates prefereed the curry which has been cooked under “reflux conditions”. The study was performed in a double blind manner (which I will come back to in part 8 of this series).

    Because aroma compounds are volatile, spices should be obtained whole and stored in tight containers away from light. If possible, fresh herbs should be used. The flavour of herbs and spices can be extracted by chopping or grinding to increase the surface area. To speed up grinding in a mortar you can add a pinch of salt or sugar.

    grinding-saffron.jpg

    Heat can help extract flavour (just think of how we brew tea or coffee), but will also evaporate volatile compounds, so a general advice would be to add spices at the start and herbs towards the end of the cooking time. Some herbs can even be sprinkeled over the food just before serving. In Southeast Asia (and especially India) it is quite common heat spices in a dry pan or in oil. This matures flavours and allows reactions to occur (possibly Maillard reactions). Coarse spices should be added earlier than finely ground spices.

    In addition to adding flavour using spices, herbs and other foods, we can also use heat to create new flavours. When sugar is heated, caramel is formed. And if a reducing sugar is heated in the presence of an amino acid, they react and form a host of new flavour compounds in what is known as the Maillard reaction. Caramelisation and the Maillard reaction are known as non-enzymatic browning. Enzymatic browning on the other hand is detrimental to many fruits (such as apples and bananas), but there are a few exceptions. Enzymatic browning is essential in the production of tea (black, green, oolong), coffe, cocoa and vanilla, although this is rarely attempted in kitchen.

    Another source of flavour is fermentation. It refers to a process were sugar is converted to alcohol and carbon dioxide by the action of a yeast. In the process a number of flavour compounds are formed as well which is why this is of great interest also from a molecular gastronomy viewpoint. Some examples of fermented products include wine, beer, cider and bread. Fermentation also refers to the process where some bacteria produce lactic acid. Some examples of foods resulting from lactic acid fermentation are yoghurt, kimchi and pickled cucumbers.

    Flavour pairing
    Cookbooks and recipes throughout the world are the result of billions of experiments. As a result, some very good combinations of herbs and spices have been discovered. Some of these mixtures have even been given names of their own and it is fascinating how easily one can forget that curry for instance is a mixture of spices. Wikipedia has a wonderful overview of herb and spice mixtures from all over the world. I must admit I only new a fraction of these:

    Adjika | Advieh | Berbere | Bouquet garni | Buknu | Cajun King | Chaat masala | Chaunk | Chermoula | Chili powder | Curry powder | Djahe | Fines herbes | Five-spice powder | Garam masala | Garlic salt | Harissa | Herbes de Provence | Khmeli suneli | Lawry’s and Adolph’s | Masala | Masuman | Mixed spice | Niter kibbeh | Old Bay Seasoning | Panch phoron | Quatre épices | Ras el hanout | Recado rojo | Shake ‘N’ Bake | Sharena sol | Shichimi | Spice mix | Tajín | Tandoori masala | Tony Chachere’s | Za’atar

    A book which I’ve found to be very useful when combining flavours is “Culinary artistry” by Andrew Dornenburg and Karen Page. It is the most comprehensive book about flavour pairing that I’m aware of, and I would say it is indispensible for someone who likes to cook without a cookbook. It has lists of basic flavors contributed by various foods. For example a sweet taste is contributed by foods such as bananas, beets, carrots, coriander, corn, dates, figs, fruits, grapes, onions, poppy seeds, sesame and vanilla (plus sugars and syrups of course). It has lists of “flavor pals”, a term attributed to Jean-Georges Vongerichten. For example, the flavour pals of ginger are allspice, chiles, chives, cinnamon, cloves ,coriander, cumin, curry, fennel, garlic, mace, nutmeg, black pepper and saffron. By far the most extensive part of the book are listings of food matchings. An illustrative example is pork which combines well with (classic/widely used combinations in bold):

    apples, apricots, bay leaves, black beans, beer, brandy, cabbage, Calvados, dried sour cherries, clams, Cognac, coriander, cream, cumin, fennel, fruit, garlic, ginger, hoisin sauce, honey, juniper berries, lemon, lime, marsala, molasses, mustard, onions, orange, parsley, black pepper, pineapple, Chinese plum sauce, plums, prunes, quinces, rosemary, sage, sauerkraut, soy sauce, star anise, tarragon, thyme, vinegar, walnuts, whiskey, white wine

    Despite the abundance of combinations, I dare say that little is understood about the science behind these flavour pairings. Why do these combinations of herbs and spices go particularily well together? Is it all about getting used to the combinations, so that we learn to like them? What influence does the complexity of the flavour play? These are easy questions that probably have rather complex answers.

    Very recently a different approach to flavour pairing has emerged. If two foods share one or more key odorants, chances are that they will go well together. The first step towards finding new pairings would be to identify key odorants. More info on key odorants can be found in the article “Evaluation of the Key Odorants of Foods by Dilution Experiments, Aroma Models and Omission” (DOI: 10.1093/chemse/26.5.533, free download). I’ve initiated the food blogging event “They go really well together” (TGRWT) to explore new flavour pairings and develop new recipes. There are also several blogposts with interesting comments on about flavour pairing.

    *

    Check out my previous blogpost for an overview of the tips for practical molecular gastronomy. The collection of books (favorite, molecular gastronomy, aroma/taste, reference/technique, food chemistry) and links (webresources, people/chefs/blogs, institutions, articles, audio/video) at khymos.org might also be of interest.

    Searching for flavour pairings

    Tuesday, April 17th, 2007

    Google can be of great help when exploring flavour pairings, especially for those of us who don’t have access to the commercial database VCF. The following tip has been mentioned in a comment to a previous blog post, but I thought it could be a good idea to bring it to everyones attention:

    The Good Scents company has en extensive range of aroma components, and the nice thing is that they list natural occurences and uses. The latter I guess, is based on the organoleptic properties of the aroma compounds. Using google, it’s possible to check if two or more foods have anything in common. Just type in the foods of interest and add site:http://www.thegoodscentscompany.com at the end. The triple combination in my last post for instance gives the following search string (click to perform the google search) and the top 5 hits are:

    furfuryl mercaptan * 98-02-2
    benzothiazole * 95-16-9
    isovaleraldehyde * 590-86-3
    bis(2-methyl-3-furyl) disulfide * 28588-75-2
    5-methyl furfural * 620-02-0

    The numbers following the name of the aroma compound are CAS registry numbers and indentify each compound uniquely. They are often more useful than the chemical name when searching the internet and databases.

    Unfortunately there is no way to distinguish whether the foods listed for each aroma compound occur under the “Natural occurences” or “Used in” labels.