Posts Tagged ‘oxidation’

Nocino – walnut liqueur (part I)

Wednesday, May 13th, 2009

Last year, while visiting family in Germany, I decided to pick some walnuts to bring home to Norway. They were not ripe, which was good, because I was planning to make nocino, a walnut liqueur. You can easily find a number of recipes by googling and there is also a nocino-thread over at eGullet.

What fascinated me the first time a saw nocino mentioned in a book about liqueurs was the nearly black color. Many recipes comment that after steeping, the liquid looks more like used motor oil than something edible. The color is really amazing and I also observed that most recipes recommended the use of gloves as the stains from the unripe walnuts would not easily come off. The juice from the walnuts is a light yellow green color to start with, but when exposed to air it quickly turns dark brown. Color chemistry is always fascinating and I couldn’t resist the temptation to investigate this further. (more…)

Lightstruck flavor in beer

Friday, February 16th, 2007

Some years ago, a group of researches studied the formation of lightstruck flavor in beer (Chem. Eur. J. 2001, 4554). They found that isohumulones, compounds contributing to the bitter taste of beer, decomposed when exposed to ultraviolet light. In a recent blogpost, Harold McGee elaborates on this and it turns out that the way this happens is even more complex than first anticipated. The researchers (J. Agric. Food Chem, 2006, 6123) found that riboflavin (vitamin B2) acts as a photosensitizer in beer (and in olive oil, milk and butter) which catalyzes the conversion of oxgyen to a more reactive type of oxygen (singlet oxygen). This oxygen then “destroys” isohumulone and in the process radicals are formed.

isohumulone1.jpg

As shown in the figure, the radical reacts with sulfur containing proteins, thereby forming a thiol called 3-methylbut-2-ene-1-thiol or just MBT for short. The amazing thing about this compound is that we can smell it at concentrations as low as a few parts per billion (ppb). The perhaps not-so-amazing thing is that this compound gives beer a “skunky” aroma. Obviously one would want to avoid this, and that’s why beer is sold in dark brown glass bottles that act as the beer’s own sunglasses. Canned beer of course will not go skunky (well not until it’s poured into a glass and served outside in bright sunlight – that will turn any beer skunky within minutes).

Unfortunately however, not all beer is sold in dark bottles! One well known brand is shown in the picture below…

corona.jpg

And yes – as you might have figured out, 3-methylbut-2-ene-1-thiol is present in Corona beer (and other brands sold in clear bottles, to a lesser extent MBT is also found in green bottled beer). For some references to “skunky” off flavours in beer check out these links: here, here and here. The ubiquitious slice of lime served with Corona beer is nothing but clever marketing since it helps camouflage the smelly thiol formed! (but how well does lime actually camouflage the thiol aroma?)

The take home message is: keep your olive oil, milk, butter and beer away from sunlight!

Ten tips for practial molecular gastronomy, part 1

Saturday, February 10th, 2007

green-apples.jpg

1. Use good and fresh raw materials of the best quality available.

No amount of cooking and preparation – be it traditional, modern or molecular – can fully disguise ingredients of poor quality. No one will probably disagree with this and it’s elementary knowledge for every cook, yet I include it because after all molecular gastronomy is also about the raw materials you use. Do not always reach for the cheapest products. Eat better, but less – it won’t cost you more, because you’ll just get less calories for the same price!

I will also encourage you to support local producers. This will probably make me sound like a slow food practitioner which is fine, because molecular gastronomy is not in any opposition to slow food or traditional cooking, it’s more about understanding the chemical and physical principles underlying all handling and preparation of food. Part of my motivation when writing about molecular gastronomy is actually to bring it a little more down to earth.

When talking about freshness it’s important to consider how food deteriorates. Assuming that safety and toxicological issues are taken care of, from a molecular gastronomy viewpoint it is interesting to discuss flavor. The most important pathways to flavor deterioration include exposure to air (particularly oxygen), light, moisture, high temperature, bacteria and fungi.

The flavor of foods stems largely from the presence of volatile organic compounds. Because of the low boiling point, these compounds easily escape from the food. And at higher temperatures evaporation of aroma compounds is even faster. Also, many of the compounds can react with oxygen in air. A typical example is the oxidation of fats which gives a rancid flavor. Generally, fats and oils should be stored in the refridgerator to slow down this oxidation, but it turns out there’s an exception for olive oil.

To retain as much of the volatile compounds as possible it is advisable to store spices in tight containers kept in a dark and cool place. If you for some reason need to store spices for a long time, put them in the freezer. Since the loss of aroma comounds is proportional to the surface area of the spice, it’s also a good idea to buy whole spices and grind them yourself immediatly prior to use. I would also recommend the use of spice pastes (such as curry pastes for instance) since the oil helps extract aroma compounds. Such pastes should preferably be stored in the fridge.

whole-spices.jpg

Like me, you probably have many different spices in your pantry. Some of them have probably been sitting around there for years which is far from optimal. Therefore, as a reminder to myself, I have started to mark each spice with the date of opening (or purchase) using a water proof pen.

spice-date.jpg

With fresh fruit and vegetables, finding the right storage conditions can sometimes be difficult, but this pdf from UC Davis provides a quick overview of recommended storage conditions (ie. what should be stored in the fridge and what should be stored on the countertop).

One last example of the importance of correct storage conditions is the staling of bread. Contrary to popular belief, staling of bread is not caused by evaporation of water from the crumb. This is easily demonstrated when you heat a slice of bread in a toaster or a microwave oven. What happens upon storage is that starch and water crystallize. As a consequence the crumb loses its elasticity and goes stale. The aging process proceeds fastest at 14 °C. Because of this, bread should be stored at room temperature – never in a fridge. When freezing bread, rapid cooling is important because the staling is halted below -5 °C.

*

Check out my previous blogpost for an overview of the tips for practical molecular gastronomy. The collection of books (favorite, molecular gastronomy, aroma/taste, reference/technique, food chemistry) and links (webresources, people/chefs/blogs, institutions, articles, audio/video) at khymos.org might also be of interest.