Posts Tagged ‘physics’

Ten tips for practical molecular gastronomy, part 8

Sunday, February 3rd, 2008

Read about the physics behind the balancing fork trick.

8. Experiment!

Dare to experiment and try new ingredients and procedures. Do control experiments so you can compare results. When evaluating the outcome, be aware that your own opinions will be biased. Have a friend help you perform a blind comparison, or even better a triangle test to evaluate the outcome of your experiments.

In a scientific context, an experiment is a set of actions and observations performed in the context of solving a particular problem, in order to support or falsify a research hypothesis. In a kitchen context, the problem to solve would typically be related to taste, aroma, texture or color. And the required actions and observations would be cooking and eating.

An essential part of the scientific method is that new knowledge is gained when, based previous knowledge, an assumption is made and tested. In the kitchen, this is exactly what you do when you taste your concoctions repeatedly as you cook. And it is also what makes you an experienced cook, because you remember and learn from your previous successes and mistakes. It might sound very complicated, but here’s how it goes:

1) Observation: soup lacks flavor
2) Hypothesis: adding something with flavor might help
3) Experiment: add more spices
4) New observation: soup tastes more (or less)
5) Hypothesis is either supported (or rejected)

Of these steps, I think observation is the easiest. Coming up with a hypothesis however can sometimes be difficult. If you have lumps in your custard or a sauce that’s separating, it isn’t always easy to think of what to do. This is where books on popular food science and molecular gastronomy might help you.


Think outside the cook book! I mentioned in previous post that you should always question authorities and cook books. And even when you have a recipe that works, remember that it’s nothing more than a suggestion. For instance, it can be useful to know when to be sloppy and when to be accurate with measurements. The smaller amount you measure, the greater the precision should be. Let’s consider a hypothetical recipe that calls for 1000 g flour and 1 g of saffron. Whether you use 999 or 1001 g of flour makes no difference, but using 1 or 2 g of saffron will be quite noticable. A good rule of thumb is that you should measure to within +/- 10% of the given amount. But again, don’t follow this blindly. Experience will show when you can be even more sloppy.

Thinking of good experiments to do requires both creativity and experience, and there are many sources of inspiration. The molecular gastronomy movement has come up with a number of books and blogs which point towards new ingredients and procedures. There are several approaches to flavor pairing (i.e. a general one based on experience and a chemical one based on impact odorants). Further more there’s a lot of inspiration to get from regional cooking – also for molecular gastronomists! Lastly, I think considering not only the food but the whole atmosphere and the setting of the meal is important, because our senses are connected!


The best way to judge the outcome of a new procedure or ingredient is to compare it with the original. I’ve previously termed this “parallel cooking”. In scientific contexts it’s very common to do control experiments and I can’t see why this shouldn’t be done in the kitchen routinely. Im convinced that this could have saved us from many kitchen myths!

Once you’ve done your parallel cooking, you have to taste it. If you did the cooking, you’ll probably have an opnion or expectation that the new dish is better or worse than the original. The big problem here is that due to confirmation bias, if you know what you are eating, this will influence your perception of it. Therefore it’s crucial to do a blind tasting (or a double-blind tasting). Have friend help you label each dish with random three digit numbers (to avoid thinking about ranking) and give them to you. If the dishes can easily be recognized due to color, it’s important that the lights are turned down or that you are blindfolded. State which dish you prefer and have your friend reveal the identity of the dishes tasted.

A slightly more sophisticated test is the triangle test which is commonly used in the food industry. The tester is presented with three samples of which two are identical and the task is to pick the odd one out. Using statistics, it’s possible to evaluate the outcome of repeated tests. The number of correct assignments in a number of triangle tests required for you to be 95% sure there is a difference are given in the table below. Read more about simple difference tests here.

Number of tests performed Number of correct assignments required
3 3
4 4
5 4
6 5
7 5
8 6
9 6
10 7

Bionomial distribution for a triangle test (p=1/3) at 0.05 probability level. A more extensive table can be found here.

It seems that this would be the ultimate way to determine whether or not there is a difference between pepsi and coke. It’s more than 50 years since the first experiments were conducted. The theory is simple, but in the real world things aren’t always that simple. Read the entertaining story about Fizzy logic.


There are several examples of experimental cooking out on the net, and I thought I’d share some of them with you as this might illustrate my ideas on the subject.

Many cooks have strong opinions about how garlic should be treated. Should it be minced, crushed or microplaned? And does this really influence the taste and aroma? Or does it only affect the degree of extraction and hence the intensity of the flavor? Dominic of Skillet Doux had a excellent post on this subject in 2006, Deconstructing garlic. The task was formulated as follows:

The subject of this experiment is the effect that various methods of breaking down garlic have on its flavor when used to prepare a dish. The hypothesis is that not only does mincing garlic create a different flavor than crushing it, but also that mincing is the preferred method for pasta sauces. Furthermore, the experiment is intended to determine if microplaning garlic achieves a character different from mincing or crushing.

In his conclusion, Dominic writes ” I was surprised to discover that the difference between the minced and crushed garlic sauces was even more significant than I had previously thought”. Check out his post to find out which kind of garlic treatment he prefers for his pasta sauces. As a side comment it can be mentioned that a group of researchers in 2007 studied the effect of cooking on garlics ability to inhibit aggregation of blood platelets. They found that crushing could reduce the loss of activity upon heating. But unfortunately they didn’t report anything about the flavor.

Other food bloggers have also adopted experimental cooking with emphasis on systematic and thorough testing. Examples include Chad’s experiments with gellan, konjac and iota/kappa carrageenans, Michael Chu’s parallell cooking of bacon and his eggplant test and Papin’s comparison of orange juices – to mention but a few! And I shouldn’t forget Dylan Stiles either whom I mentioned in part 5 of this series:

A challenge with aroma molecules is that they should remain intact during storage and not be released until cooking (or even better, until consumption). A example would be to install a Liebieg condenser over your pot. Dylan Stiles has explored this in his column Bench Monkey by placing a bag of ice on top of the lid. He claims that his roommates preferred the curry which has been cooked under “reflux conditions”. The study was performed in a double blind manner (which I will come back to in part 8 of this series).

An extreme example of the application of the scientific method to cooking appeared in the news last spring when the recipe for the ultimate bacon buttie was revealed by scientists from Leeds University. Commissioned by Danish Bacon, the study evaluated more than 700 variations of a bacon buttie. They even came up with a “formula” for the perfect bacon buttie and quantified the required crispiness and crunchiness. The news story was picked up by many news agencies, so although it wasn’t necessarily ground breaking science, at least it was clever marketing.


Check out my previous blogpost for an overview of the 10 tips for practical molecular gastronomy series. The collection of books (favorite, molecular gastronomy, aroma/taste, reference/technique, food chemistry, presentation/photography) and links (webresources, people/chefs/blogs, institutions, articles, audio/video) at might also be of interest.

Carbonated fruit the iSi way

Monday, April 9th, 2007

I blogged about carbonated strawberries some while ago. Those were made using dry ice which unfortunately is not always easy to get hold of. Last week however I bought a iSi Gourmet Whipper – one of those Ferran Adria uses to make foams/espumas. I plan to experiment with that as well, but the first thing I decided to prepare was carbonated fruit. In fact this is a safe way (the only?) to make carbonated fruit at home using a pressurized container.


The instruction booklet which comes with the iSi Gourmet Whipper only mentions cream chargers (filled with N2O, dinitrogen oxide), whereas soda chargers (filled with CO2, carbon dioxide) are not mentioned (I guess the opposite is true for the iSi Siphons?). This is quite amazing actually! Luckily however the cream and soda chargers are exactly the same size and both hold 8 g of gas. So it should be possible to make carbonated fruit with any of the iSi whippers (cream, easy, gourmet, dessert, thermo) or siphons available.

Here’s how you proceed:

  1. Fill you iSi whipper (or siphon) with fruit, preferably fruit which has a cut, wet surface to allow the carbon dioxide to dissolve in the water/juice.
  2. Screw on top securly
  3. Charge with one soda charger (two if you have the 1 L whipper)
  4. Leave in fridge over night
  5. Release pressure with valve (Important!)
  6. Unscrew top and serve immediately!
  7. Enjoy!

This is what carbonated grapes look like. As you see, I decided to cut the grapes in to halves.

Notice how they sizzle!

A quick recap of the chemistry: cold water dissolves more CO2 than tempered water, that’s why we leave it in the fridge. Also, remember that it takes some time for the carbon dioxide to dissolve in water, therefore it’s better not to be in a hurry. A quick calculation of the pressures gives the following: Both gases have molecular weights of 44 g/mol, so 8 g of gas corresponds to 0.1818 moles or 4.1 L at 25 °C and 1 atm pressure. The volume of the chargers is 0.01 L which gives an initial pressure in the chargers of impressive 445 atm! With an approximate volume of 0.7 L this gives a pressure (in an empty whipper) of nearly 6 atm – the same as in a bottle of champagne. However once you add water, the equilibriums will change and the pressure in the head space will drop. Anyone who remembers how to calculate the head space pressure at equilibrium if the container is filled with 0.5 L of water and cooled to 4 °C?

I’ve done some googling and there is also some mention of making carbonated fruit with an iSi whipper over at Ideas in food.

(The word play in the title works better for those with a mother tongue where iSi would be pronounced just like “easy”!)

Simple temperature calculations

Thursday, March 8th, 2007

Although I recommend the use of a thermometer, sometimes it’s convenient to know how you can also manage without. If you mix water at two different (but known) temperatures, you can easily calculate the temperature after mixing. Just multiply the temperature of each part with the relative amount. For example, if you have 3 dL at 100 °C and 7 dL at 10 °C (which happens to be the approximate temperature of my tap water), this gives (3 dL x 100 °C + 7 dL x 10 °C) / 10 dL = 37 °C which is just perfect for dissolving fresh yeast when making bread.

You can also do it the other way around. Let’s say you have boiling water and you know that your tap water is approximately 10 °C. If you want water at approximately 37 °C, you can do as follows:


Start by writing what you have to the left (100 °C and 10 °C) and what you want in the middle (37 °C). Subtract: (100-37) = 63 and (37-10) = 27. And voilá – you need 27 parts water at 100 °C and 63 parts at 10 °C (and 27:63 simplifies to 3:7 which is what we found above). Now of course if you really wanted water at 37 °C, you would simply put your finger in to see if it’s at body temperature…

Are there any practical applications of this? Yes – a simple, but elegant way to prepare fish would be to drop a fish of known weight and temperature (fridge @ 4 °C or freezer @ -18 °C) into water that has been brought to boil. Cover pot and turn off heat. The amount of water would be calculated based on the desired temperature of the fish. We are assuming here that there is no heat loss to the surroundings, which of course isn’t quite true. How fast pot of water will cool depends on how much water you use and on the pot. This can be corrected for, and luckily someone has already done it. More on this in my post on how to cook fish in cooling water.

We can apply the temperature calculation from above to figure out roughly what the temperature will with this cooking method. 800 g of fish from the fridge (4 °C) and 2,4 L of boiling water gives a temperature of (0,8 x 4 °C + 2,4 x 100 °C) / 3,2 = 76 °C. The cooling curves for a pot with 2,5 L of water suggest a temperature loss of 15-20 °C in 30 min which would bring us down to 55-60 °C which – considering that no thermometer is used – is quite good.

Cooking fish in cooling water

Thursday, March 8th, 2007

I have previously written about how you can cook a perfect steak with a simple DIY sous vide technique. Of course low temperature cooking applies equally well to fish with the only difference that the temperature can be turned down even lower.

A slightly different approach for cooking fish was presented by Haqvin Gyllensköld in the Swedish book “Koka, steka, blanda” from 1977, which I became aware of through Östen Dahlgren’s book “Laga mat – hur man gör och varför”. In stead of keeping the fish at a constant temperature (which requires quite some attention unless you have a thermostated waterbath), in this method, as the hot water cools, the temperature of the fish increases until they’re at the same temperature.

This is how you do it:

  1. Weigh the fish
  2. Boil the triple amount of water
  3. Add some salt to the water (15 g / L)
  4. Put the fish in the water and remove the pot from the stove
  5. Check the graph below for how long the fish should be left in the cooling water
  6. Serve!


Need help on fish names in different languages? Yeah, me too!

Staying warm: Cast iron vs. stainless steel

Thursday, March 1st, 2007

Cookware made from cast iron has a reputation for keeping food warm for a long time. Is that really true? Best way to find out is by an experiment. I decided to compare a cast iron pot with one of stainless steel. These are the pots I used:


For the first experiment I filled them each with 2,5 L of water, put the lids on and brought both to the boil and let them boil for a minute so the pot itself would be warm throughout. Then both were placed on cork plates and left to cool. The temperature probe was carefully inserted under the lid in order to reduce the heat loss, and removed once the temperature had stabilized. For the second experiment 5 L of water were used. The measured temperatures are shown in the graph.


Contrary to what I had expected, the stainless steel pot keeps water warmer! After approximately 1,5 hours there is a 10 °C difference between the two. As expected, when using 5 L of water, it stays warm longer. Physical data for the two pots are given in the following table:

Cast iron Stainless steel
Volume 6 L 6 L
Diameter 27,9 cm 25,0 cm
Height 11,5 cm 14,5 cm
Surface area
1619 cm2 1629 cm2
Surface area
in contact with 5 L water
1301 cm2 1286 cm2
Weight 6,1 kg 2,3 kg
Wall thickness ~4 mm <1 mm
Heat capacity of pan 2,8 kJ/K 1,2 kJ/K
Thermal conductivity 80 Wm-1K-1 16 Wm-1K-1
Thermal diffusivity 22 x 10-6 m2/s 4.3 x 10-6 m2/s
Emissivity 0.95 0.07

The heat capacity of the cast iron pot is more than double that of the stainless steel pot. But this is negligible compared to the heat capacity of water: 10.5 kJ/K (2,5 L) and 20,9 kJ/K (5,0 L). Also, there is only a small difference in their surface area which cannot explain the large difference in temperature loss observed.

This leaves me with two eplanations:

  • Cast iron is better heat conductor and has a higer thermal diffusivity
  • Cast iron (being nearly black) has a much higher emissivity than a polished stainless steel surface. The reason for this is that absorption and reflection of radiation are related.
  • My guess is that the difference in emissivity is more important (but please correct me if I’m wrong). With an infrared thermometer, one should therefore be able to measure a difference between pots of cast iron and polished stainless steel (even though they’re at the same temperature!) due to the difference in emissivity. Any one who can do the experiment and report back?

    Conclusion: There are many good reasons to use cast iron, but keeping food warm is not one of them!

    Egg white foam + microwave = Vauquelin

    Sunday, February 4th, 2007

    By beating air into an egg white you can increase it’s volume by a factor of approximately 8. Hervé This has shown that water is the limiting component. By adding more water you can significantly increase the volume. Addition of sugar further stabilises the foam by increasing the viscosity of the water. A very simple dessert kan be made by whisking egg whites with sugar and berries of your choice. In Norway we refer to this as “Troll cream”. There’s more on this over at An interesting question for you to ponder upon is in what order egg whites, berries and sugar should be mixed to maximize the volume!

    But there is more to such a foam than trolls! For the following experiment, use one eggwhite and a berry syrup of your choice – I used a blueberry syrup (approximately 1,5 dL). Start by whisking the egg white. Add the syrup slowly over 5-10 min while constantly whisking. Observe how the volume increases dramatically. When I did the experiment I got roughly 2 L of foam (which corresponds to a 40-50 fold increase in volume). Make sure you use a clean bowl, preferably one of metal as fats and oil cling very well to plastic bowls.


    Now comes the fun part: Put some of the egg white foam onto a plate and place it in a microwave oven to make the proteins set! Hervé This described this in a recent article and decided to name this dish “Vauquelin” after the french pharmacist and chemist Louis Nicolas Vauquelin. It does take some experimentation to find a proper combination of the power setting and the time needed for the Vauquelin to set. If you overdo it, the foam will just collapse. I used the 360W setting and 4 seconds for the Vaquelin in the picture below.


    Cutting through the Vauquelin with a knife leaves a trace which does not refill.


    Scooping out with a spoon also gives you an impression of the texture.


    Instead of blueberry syrup you can try other liquids. Hervé This suggests orange juice or cranberry juice (both require addition of sugar). Liquours also work fine (although my experimentation suggests that the volume increases somewhat less), but remember to add sugar as this stabilises the foam and rounds of the taste.

    Ten tips for practical molecular gastronomy

    Saturday, January 27th, 2007

    In a recent survey 72% of chefs say they may want to experiment with molecular gastronomy in 2007. That’s an impressive number and considering the attention molecular gastronomy gets in media I bet many home cooks would want to experiment in the kitchen as well. Here’s a list of things to consider if you want to make a scientific approach towards cooking:

    1. Use good and fresh raw materials of the best quality available.

    2. Know what temperature you’re cooking at. A dip probe thermometer with a digital read out is a cheap way to bring science into your kitchen.

    3. Get a basic understanding of heat transfer, heat capacity and heat conductance. “Heat” in this context des not imply high temperature since it also applies to the understanding of freezing/thawing.

    4. Learn how to control the texture of food. Some key points: temperature induced changes (freezing, heating), emulsifiers, thickeners, gelling agents, moisture content, pressure/vacuum, osmosis.

    5. Learn how to control taste and flavor. Some key points: flavor pairings, spice synergies/antagonies, influence of temperature (Maillard reaction, caramelization, temperature stability, volatility), taste enhancers, taste suppresants, solubility of flavour compounds in fat/water, extraction.

    6. Remember that prolonged exposure to a flavor causes desenzitation, meaning that your brain thinks the food smells less even though it’s still present in the same amount. Therefore, let different flavours enhance each other. Similarly, variation in taste, texture, temperature and color can open up new dimensions in a dish. This is referred to as “increased sensing by contrast amplification”.

    7. Be critial to recipes and question authority – they do not necessarily represent “the truth”. Nevertheless, you can certainly learn a lot from the experts.

    8. Dare to experiment and try new ingredients and procedures. Do control experiments so you can compare results. When evaluating the outcome, be aware that your own opinions will be biased. Have a friend help you perform a blind test, or even better a triangle test to evaluate the outcome of your experiments.

    9. Keep a written record of what you do! It would be a pity if you couldn’t recreate that perfect concoction you made last week, simply because you forgot how you did it.

    10. Have fun!

    Heat causes many changes in food, but few appreciate how important it is to know at what temperature they are cooking and at what temperature the desired change occurs.

    These tips for molecular gastronomy relate to the technical and scientific aspects of food preparation and eating, and I plan to elaborate on each of the points in separate blog posts. However, according to Hervé This’ definition of molecular gastronomy, one should also investigate the social and artistic components of cooking. A good example of this is the “Five Aspects Meal Model” developed at Grythyttan in Sweden (Gustafsson, I.B. et al. Journal of Food Service, 2006, 84.). Although intended for a restaurant setting, the general idea can also be applied for home cooking.

    The meal takes place in a room (room), where the consumer meets waiters and other consumers (meeting), and where dishes and drinks (products) are served. Backstage there are several rules, laws and economic and management resources (management control system) that are needed to make the meal possible and make the experience an entirety as a meal (entirety – expressing an atmosphere).

    Or to put it differently: average food eaten together with good friends while you’re sitting on a terrace with the sun setting in the ocean will taste superior to excellent food served on plastic plates and eaten alone in a room with mess all over the place.

    One last thing: once you’re finished in the kitchen with your culinary alchemy, your gastro physics, your cutting edge science cuisine, your molecular cooking, your hypermodern emotional cooking, your science food or whatever fancy name you attach to it – remember the social and artistic components when you serve the food. Just so people won’t refer to you as a techno chef, a mad scientist or a modern day Willy Wonka. After all, molecular gastronomy is about the science of deliciousness, not technical wizardry.

    Questions and topics for future blog posts are welcome at webmaster [a] (substitute @ for [a]) or as a comment below.